Homework 6, due 4/3

Only your four best solutions will count towards your grade.

- 1. Let $*: \mathcal{A}^{p,q} \to \mathcal{A}^{n-p,n-q}$ denote the Hodge star operator defined in class.
 - (a) Show that $**\alpha = (-1)^{p+q}\alpha$ for $\alpha \in \mathcal{A}^{p,q}$.
 - (b) Show that * is a conjugate linear isometry for the Hermitian inner product, i.e. $\langle *\alpha, *\beta \rangle = \langle \beta, \alpha \rangle$ for all $\alpha, \beta \in \mathcal{A}^{p,q}$.
- 2. Let $T = \mathbf{C}/(\mathbf{Z} \oplus \sqrt{-1}\mathbf{Z})$ be a torus. Show directly from the definitions that the deRham cohomology of T is given by $H^0(T, \mathbf{R}) \cong \mathbf{R}, H^1(T, \mathbf{R}) \cong \mathbf{R}^2$ and $H^2(T, \mathbf{R}) \cong \mathbf{R}$.
- 3. Let (X, g) be a connected Kähler manifold of dimension at least 2. Show that if for a function $f: X \to \mathbf{R}$ the metric $e^f \cdot g$ is Kähler, then necessarily f is constant.
- 4. Let ω denote the standard Kähler form on **C**, i.e. $\omega = \frac{\sqrt{-1}}{2} dz \wedge d\overline{z}$. Show that for a function f on **C** we have

$$(\bar{\partial}\bar{\partial}^* + \bar{\partial}^*\bar{\partial})f = -\frac{1}{2}\left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}\right)$$

5. Let $f: D \to \mathbf{C}$ denote a locally integrable function on the unit disk in \mathbf{C} , which is holomorphic in a distributional sense, i.e. $(f, \bar{\partial}^* \alpha)_{L^2} = 0$ for all smooth (0, 1)-forms α compactly supported in D. We are using the standard metric on \mathbf{C} to define the adjoint, and $(f, g)_{L^2}$ denotes the L^2 -inner product

$$(f,g)_{L^2} = \int_D f\bar{g} \operatorname{Vol}_{\mathcal{F}}$$

using the standard volume form on \mathbb{C} . In this and the following problem we will show that f is smooth and holomorphic. First show that if we already know that f is smooth, then f is necessarily holomorphic.

6. Consider the setup of the previous question. Let $\rho : \mathbf{C} \to \mathbf{R}$ denote a smooth radially symmetric function, supported in D, such that $\int_D \rho \operatorname{Vol} = 1$. For $\epsilon > 0$ define ρ_{ϵ} by $\rho_{\epsilon}(z) = \epsilon^{-2}\rho(\epsilon^{-1}z)$, and define f_{ϵ} to be the convolution

$$f_{\epsilon}(z) = \int_{\mathbf{C}} f(z-w)\rho_{\epsilon}(w) \frac{1}{2}\sqrt{-1}dw \wedge d\bar{w}$$

for $|z| < 1 - \epsilon$.

- (a) Show that f_{ϵ} is smooth and holomorphic.
- (b) By bounding the integral of f_{ϵ} , show that once ϵ is small enough ($\epsilon < 1/4$ is enough), then we have a uniform derivative bound $|f'_{\epsilon}| < C$ on $D_{1/2}$, independent of ϵ .
- (c) Deduce that along a sequence $\epsilon_k \to 0$ we can extract a holomorphic limit $f_{\epsilon_k} \to f_0$ on $D_{1/2}$, and necessarily $f_0 = f$.